Tyrosine residues affecting sodium stimulation of carnitine transport in the OCTN2 carnitine/organic cation transporter.

نویسندگان

  • Cristina Amat di San Filippo
  • Nicola Longo
چکیده

Primary carnitine deficiency is a disorder of fatty acid oxidation caused by mutations in the Na+-dependent carnitine/organic cation transporter OCTN2. Studies with tyrosyl group-modifying reagents support the involvement of tyrosine residues in Na+ binding by sodium-coupled transporters. Here we report two new patients with carnitine deficiency caused by mutations affecting tyrosyl residues (Y447C and Y449D) close to a residue (Glu-452) previously shown to affect sodium stimulation of carnitine transport. Kinetic analysis indicated that the Y449D substitution, when expressed in Chinese hamster ovary cells, increased the concentration of sodium required to half-maximally stimulate carnitine transport from 14.8 +/- 1.8 to 34.9 +/- 5.8 mM (p<0.05), whereas Y447C completely abolished carnitine transport. Substitution of these tyrosine residues with phenylalanine restored normal carnitine transport in Y449F but resulted in markedly impaired carnitine transport by Y447F. This was associated with an increase in the concentration of sodium required to half-maximally stimulate carnitine transport to 57.8 +/- 7.4 mM (p<0.01 versus normal OCTN2). The Y447F and Y449D mutant transporters retained their ability to transport the organic cation tetraethylammonium indicating that their effect on carnitine transport was specific and likely associated with the impaired sodium stimulation of carnitine transport. By contrast, the Y447C natural mutation abolished the transport of organic cations in addition to carnitine. Confocal microscopy of OCTN2 transporters tagged with green fluorescent protein indicated that the Y447C mutant transporters failed to reach the plasma membrane, whereas Y447F, Y449D, and Y449F had normal membrane localization. These natural mutations identify tyrosine residues possibly involved in coupling the sodium electrochemical gradient to transmembrane solute transfer in the sodium-dependent co-transporter OCTN2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional regions of organic cation/carnitine transporter OCTN2 (SLC22A5): roles in carnitine recognition.

The organic cation/carnitine transporter OCTN2 transports carnitine in a sodium-dependent manner, whereas it transports organic cations sodium-independently. To elucidate the functional domain in OCTN2, we constructed chimeric proteins of human OCTN2 (hOCTN2) and mouse OCTN3 (mOCTN3) and introduced mutations at several amino acids conserved among human, rat and mouse OCTN2. We found that transm...

متن کامل

Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2.

OCTN2 is an Na(+)-dependent transporter for carnitine, which is essential for fatty acid metabolism, and its functional defect leads to fatal systemic carnitine deficiency (SCD). It also transports the organic cation tetraethylammonium (TEA) in an Na(+)-independent manner. Here, we studied the multifunctionality of OCTN2, by examining the transport characteristics in cells transfected with mous...

متن کامل

Title Pharmacological and pathophysiological roles of carnitine / organic

The carnitine/organic cation transporter (OCTN) family consists of three transporter isoforms, i.e., OCTN1 (SLC22A4) and OCTN2 (SLC22A5) in humans and animals and Octn3 (Slc22a21) in mice. These transporters are physiologically essential to maintain appropriate systemic and tissue concentrations of carnitine by regulating its membrane transport during intestinal absorption, tissue distribution,...

متن کامل

Functional expression of organic cation/carnitine transporter 2 (OCTN2/SLC22A5) in human brain capillary endothelial cell line hCMEC/D3, a human blood-brain barrier model.

  The aim of this study was to examine whether organic cation/carnitine transporter 2 (OCTN2/SLC22A5) plays a role in the human blood-brain barrier (BBB) by evaluating its functional activity in human brain endothelial cells (hCMEC/D3), which are considered to be a model of the BBB. The uptake of [(3)H]L-carnitine by hCMEC/D3 cells was time-, extracellular sodium- and concentration-dependent, w...

متن کامل

Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter.

We have demonstrated in the present study that novel organic cation transporter (OCTN) 2 is a transporter for organic cations as well as carnitine. OCTN2 transports organic cations without involving Na(+), but it transports carnitine only in the presence of Na(+). The ability to transport organic cations and carnitine is demonstrable with human, rat, and mouse OCTN2s. Na(+) does not influence t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 8  شماره 

صفحات  -

تاریخ انتشار 2004